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Abstract: Using the molecular electronegativity distance vector descriptors derived directly from 
the molecular topological structures, the aqueous solubilities of polychlorinated biphenyls (PCBs) 
were predicted.  A three-variable regression equation with correlation coefficient of 0.9739 and 
the root mean square errors of 0.26 was developed.  The descriptors included in the equation 
represent three interactions between three pairs of atomic types, i.e., atom −C= and >C=, −C= and 
−Cl, and −Cl and −Cl.  It has been proved that the aqueous solubilities of 137 PCB congeners can 
be accurately predicted as long as there are more than 65 calibration compounds. 
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Polychlorinated biphenyls (PCBs) are among the most widespread pollutants in the 
global ecosystem1,2.  Because of the lipophilic nature of molecules, PCBs 
bioaccumulate in the food chain, and residues have been detected in fish and wildlife, 
and in human adipose tissue, milk and serum3.  To explain the behaviour of these 
pollutants in the environment it is very useful to have a good knowledge of their 
physico-chemical properties, like aqueous solubility, activity coefficient, partition 
coefficient, that are all related to the hydrophobicity.  These properties are particularly 
important because many PCBs are highly hydrophobic, their concentration in water 
remaining small and their accumulation in sediments4 and aquatic organisms5 significant.  
As for the prediction of the physico-chemical properties for organic compounds, many 
reliable methods have been developed by various investigators: quantitative structure 
activity relationship (QSAR) such as molecular connective indices, quantitative structure 
property relationship (QSPR), linear solvation energy relationship.  Recently, 
Gramatica6 used WHIM descriptors to develop some quantitative models between 
physico-chemical properties including aqueous solubility and structures of PCBs.  

In the present study, we investigated the possibility of predicting the aqueous 
solubilities (SW) of PCBs by using the molecular electronegativity distance vector7-8 
(MEDV) derived directly from their two-dimensional topological molecular structures 
and modified electrotopological state index.  With the help of our program VSMP 
(variable selection and modeling based on the prediction)9, a three-variable QSAR 
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equation with high prediction power has been developed. 
137 PCBs (skeleton structure shown in Figure 1) and their SW  values (unit is 

mol/L) observed are directly taken from the literature6 (see supporting materials).  The 
original MEDV descriptors are calculated according to the literature8.  Because only 
exist as three atomic types of nos. 2 (=C−), 3 (>C=), and 13 (−Cl), there are 6 
interactions between these types and then only 6 nonzero MEDV descriptors for all 137 
PCBs under study.  The nonzero descriptors are x14 (interaction between types of nos. 2 
and 2), x15 (nos. 2 and 3), x25 (nos. 2 and 13), x26 (nos. 3 and 3), x36 (nos. 3 and 13), and 
x91 (nos. 13 and 13), respectively.  The six descriptors characterize well the molecular 
structures of the PCBs and the resolution ratio is 100%.  

 
Figure 1  Three atomic types of PCBs as their MEDV descriptors 

 
 
 
 
 
Three atomic types in PCB molecule are type of nos. 2 (=C−), 3(>C=), and 13(−Cl). Six 
interactions between them are 2−2, 2−3, 2−13, 3−3, 3−13, and 13−13, respectively, related to six 
MEDV descriptors, x14, x15, x25, x26, x36, and x91. 

 
Because the value of aqueous solubility (SW) for PCBs is very low, a negative 

logarithm transformation of SW has to be performed before modeling a QSSR.  The 
range of the values is from −logSW = 5.26 to 10.18 and the distribution is widespread and 
homogeneous (see Figure 2).  

The RRT values of 30 compounds display below 0.4, 34 values between 0.4 and 0.5, 
38 values between 0.5 and 0.6, 46 values between 0.6 and 0.7, 32 values between 0.7 and 
0.8, and 30 show RRT values above 0.8.   

To develop a stable and predicable quantitative structure-solubility relationship 
(QSSR) model between the MEDV descriptors and aqueous solubilities of 137 PCB 
congeners, it is essential to optimize the combinations of six MEDV descriptors entering 
into the final QSSR model.  Here, the VSMP program developed in house is employed 
to select the best subset of descriptors.  It has been found that the QSSR model 
including three MEDV descriptors, x15, x25, and x91, has the best model quality.  The 
best model is as follows.  

 
−logSW = (4.0173 ± 0.1581) + (0.05168 ± 0.00707)⋅x15  

+ (0.05904 ± 0.01015)⋅x25 + (0.5385 ± 0.0122) ⋅x91                     (1) 
n = 137, m = 3, r = 0.9739, RMSEE = 0.26, F = 816.39 (Estimation) 
n = 137, m = 3, q = 0.9724, RMSEP = 026           (LOO prediction) 

 
where n and m are the number of samples and the nonzero MEDV−13 descriptors, 
respectively.  The r, RMSEE and F are the correlation coefficient, the root mean square 
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error, and Fischer statistic of estimations, respectively.  The value after the symbol “±” 
in eq. 1 is the standard derivation related to the regression coefficient.  A good QSSR 
model should have not only an excellent estimation ability for the internal example but 
also a good prediction ability for the external example.  So, a leave−one−out (LOO) 
cross validation procedure is used to test the prediction ability of the model built.  The q 
and RMSEP refer to the correlation coefficient (q) and the root mean square error 
(RMSEP) of predictions obtained in the LOO procedure.  From equation 1, the 
3−variable QSSR model has high estimation statistics and predictive ability.  Obviously, 
the solubility of PCB compound in water is closely related to the molecular structure.  
To explain the effect of each atomic type on the SW of PCB, the standard regression 
coefficients (b0) of three MEDV descriptors are also calculated by our VSMP program 
and the b0 values of three descriptors, x15, x25, and x91, are 0.216, 0.151, and 1.042, 
respectively.  This shows that  the most important descriptor affecting the SW is the 
interaction between chloride atoms (x91).  The second important descriptors are x15 and 
x25.  These descriptors reflect the interactions between atom segment −C= and >C= as 
well as −C= and −Cl.  
 The values of −logSW estimated by equation 1 and observed experimentally are 
listed in Table 1 of supporting material together with the values of three optimal MEDV 
descriptors.  The relationship graph between −logSW estimated and observed is shown in 
Figure 3.  
 

Figure 2  Distribution of −logSW.      Figure 3  Plot of −logSW estimated vs observed. 
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A good fit alone does not guarantee that the model will be useful for prediction 
purposes.  Some kind of validation is necessary to test how stable is the model and how 
well does it predict.  The above LOO cross-validation experiment primarily tests the 
stability of the model (equation 1).  However, it is not enough to prove the predictive 
ability of the model having merely a high value of q2.  To further test the predictive 
ability of the model for the external compounds without in the model, part of compounds 
are picked up from 137 PCBs to construct a calibration set which is used to develop a 
predict model and then predict the values of −logSW in the remaining compounds.  How 
to pick up the compounds in the calibration set is very important to the development of a 
predictive QSSR model.  The procedure used in this study consists of two steps: (a) 
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ranking the −logSW of 137 PCBs and (b) equidistantly picking up the compounds from 
the ranked PCB compound set.  In this way, 25, 35, 45, 55, 65, 75, 85, 95, and 105 PCB 
compounds are respectively picked up to construct nine linear QSSR equation between 
three optimal MEDV descriptors and −logSW of these PCBs.  These QSSR models are 
respectively used to predict the values of −logSW in remaining 112, 102, 92, 82, 72, 62, 
52, 42, and 32 PCB compounds.  The statistical results (see Table 2) together with 
various regression coefficients show that five QSSR models developed by the calibration 
sets including more than 65 PCB compounds have no significant differences with the 
model (eq. 1) derived from all 137 PCBs.  

 
Table 2  Some calibration set models and their statistical parameters. 

Calibration Set (m = 3) Testing Set 
n r RMSC a F q RMSV a n rP RMSP a 

25 0.9756 0.24 138.30 0.9621 0.31 112 0.9721 0.27 
35 0.9752 0.25 200.73 0.9688 0.28 102 0.9735 0.26 
45 0.9671 0.29 197.33 0.9604 0.32 92 0.9773 0.24 
55 0.9771 0.24 359.08 0.9737 0.26 82 0.9712 0.27 
65 0.9723 0.26 351.24 0.9688 0.28 72 0.9753 0.25 
75 0.9724 0.26 410.52 0.9692 0.28 62 0.9759 0.25 
85 0.9712 0.27 449.07 0.9683 0.28 52 0.9783 0.24 
95 0.9766 0.24 624.98 0.9745 0.25 42 0.9682 0.29 
105 0.9731 0.26 601.62 0.9710 0.27 32 0.9772 0.25 

a RMSC, RMSV, and RMSP are the root mean square errors in modeling, LOO validation, and prediction. 
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